Géométrie complexe en dimension 1 Partie II : Groupes d'automorphismes

AZIZ EL KACIMI Université Polytechnique Hauts-de-France http://perso.numericable.fr/azizelkacimi/

Mini-cours au Séminaire Inter-Universitaire de Géométrie - Maroc Samedi 29 janvier 2022

3. Biholomorphismes

3.1. <u>Généralités</u>

Le problème de l'équivalence entre objets mathématiques est central.

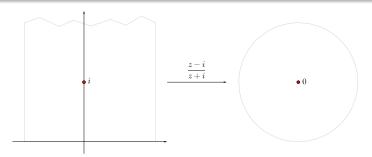
Soient U et V deux ouverts non vides de \mathbb{C} . On dira qu'une application $\phi: U \longrightarrow V$ est un biholomorphisme si ϕ est bijective, holomorphe et ϕ^{-1} holomorphe. On dira que U et V sont biholomorphiquement équivalents s'il existe un biholomorphisme de U sur V. Un biholomorphisme de U sur lui-même est appelé automorphisme de U. L'ensemble des automorphismes de U est un groupe noté Aut(U).

Notons que deux ouverts U et V biholomorphiquement équivalents ont des groupes d'automorphismes isomophes. En effet, si $h:U\longrightarrow V$ est un biholomorphisme, il est immédiat de vérifier que l'application $\phi\in \operatorname{Aut}(U)\longmapsto h\circ\phi\circ h^{-1}\in \operatorname{Aut}(V)$ est un isomorphisme de groupes.

Nous allons déterminer les groupes d'automorphismes du disque unité ouvert $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ et le demi-plan supérieur $\mathbb{H}=\{z=x+iy\in\mathbb{C}:y>0\}$. Mais avant cela nous donnerons l'un des théorèmes les plus puissants dans cette direction.

Théorème d'uniformisation

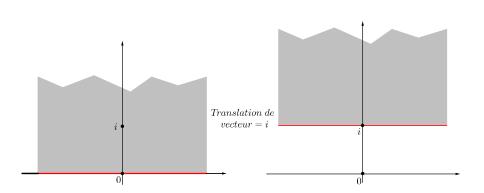
Soit U un ouvert simplement connexe de \mathbb{C} différent de \mathbb{C} . Alors U est biholomorphiquement équivalent au disque unité ouvert \mathbb{D} .

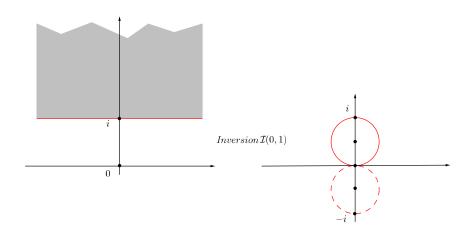


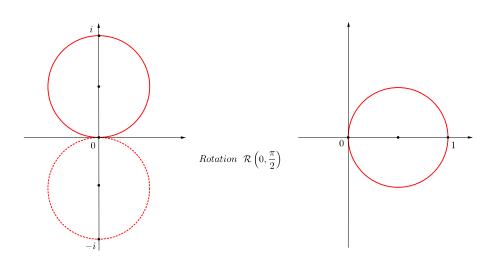
On peut écrire $\phi(z) = \frac{z-i}{z+i} = -\frac{2i}{z+i} + 1$. Ce qui montre que ϕ se décompose comme suit.

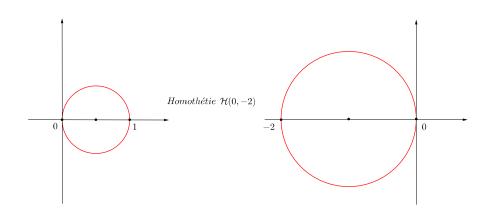
- ① $z \mapsto z_1 = z + i$: translation de vecteur i.
- 2 $z_1 \mapsto z_2 = \frac{1}{\overline{z_1}} = \frac{1}{\overline{z}-i}$: inversion de pôle 0 et de puissance 1.
- 3 $z_2 \mapsto z_3 = \overline{z_2} = \frac{1}{z+i}$: symétrie par rapport à l'axe 0x.
- ① $z_3 \mapsto z_4 = iz_3 = \frac{i}{z+i}$: rotation de centre 0 et d'angle $\frac{\pi}{2}$.
- 5 $z_4 \mapsto z_5 = -2z_4 = \frac{-2i}{z+i}$: homothétie de centre 0 et de rapport -2.
- $z_5 \mapsto z_6 = z_5 + 1 = iz_3 = \frac{-2i}{z+i} + 1 = \phi(z)$: tanslation de vecteur 1.

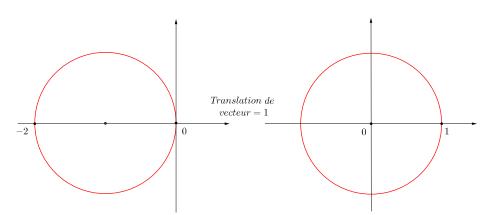
Si tu cales sur un problème, fais un dessin, tu y verras beaucoup mieux!











3.2. Exemples de groupes d'automorphismes

Théorème

Tout biholomorphisme du disque unité ouvert \mathbb{D} s'écrit sous la forme $f(z) = e^{i\theta} \frac{z-p}{\overline{p}z-1}$ où θ est un réel et $p \in \mathbb{D}$. De manière équivalente, on peut aussi écrire f sous la forme $\frac{\alpha z+\overline{\beta}}{\beta z+\overline{\alpha}}$ avec $|\alpha|^2 - |\beta|^2 = 1$.

Comme on vient de le signaler la transformation homographique $\phi(z) = \frac{z-i}{z+i}$ est un biholomorphisme de $\mathbb H$ sur $\mathbb D$. On a donc une application : $\zeta: \operatorname{Aut}(\mathbb D) \longrightarrow \operatorname{Aut}(\mathbb H)$ définie par $\zeta(f) = \phi^{-1} \circ f \circ \phi$ et qui est en fait un isomorphisme de groupes. Ceci nous donne le :

Théorème

Tout automorphisme du demi-plan ouvert $\mathbb{H} = \{x + iy \in \mathbb{C} : y > 0\} \text{ est de la forme } f(z) = \frac{az+b}{cz+d} \text{ où } a, b, c, d \text{ sont des réels tels que } ad - bc = 1.$

Preuve du premier théorème

Nous utiliserons à cet effet le Lemme de Schwarz:

```
Soit f: \mathbb{D} \longrightarrow \mathbb{C} holomorphe sur le disque unité ouvert \mathbb{D} et telle que |f| < 1 et f(0) = 0. Alors |f(z)| \le |z| et |f'(0)| \le 1. Si |f(z)| = |z| pour un certain z \ne 0 ou si |f'(0)| = 1, alors il existe \theta \in \mathbb{R} tel que f(z) = e^{i\theta}z.
```

D'abord, toute transformation $f(z) = e^{i\theta} \frac{z-p}{\overline{p}z-1}$ où θ est un réel et $p \in \mathbb{D}$ est un biholomorphisme de \mathbb{D} . En effet, comme la multiplication par $e^{i\theta}$ est une isométrie euclidienne, ceci va découler de l'assertion qui suit.

On note $\overline{\mathbb{D}}$ le disque unité fermé $\{z \in \mathbb{C} : |z| \leq 1\}$ dont le bord est le cercle unité $\Gamma = \{z \in \mathbb{C} : |z| = 1\}$. Soit $p \in \mathbb{D}$ et posons $\omega = \frac{1}{p}$; il est clair que $|\omega| > 1$ et donc $\omega \notin \overline{\mathbb{D}}$. Pour tout $z \in \Omega = \mathbb{C} \setminus \{\omega\}$, posons $\varphi(z) = \frac{z-p}{\overline{p}z-1}$.

L'application φ est un automorphisme de Ω et sa restriction au disque unité ouvert $\mathbb D$ est un automorphisme de celui-ci.

Démontrons cela. Le fait que φ soit un automorphisme de Ω est immédiat : φ est une bijection de l'ouvert Ω sur lui-même d'inverse $\varphi^{-1}(w) = \frac{w-p}{\overline{\rho}w-1} = \varphi(w)$.

Pour voir que φ induit un automorphisme de \mathbb{D} , il suffit de montrer que l'image $\varphi(\mathbb{D})$ de \mathbb{D} par φ est contenue dans \mathbb{D} . Comme φ est une homographie, elle transforme tout cercle qui ne passe pas par ω en un cercle. Montrons qu'elle laisse le cercle unité Γ globalement invariant. Il suffit à cet effet de montrer que les images de trois points distincts de Γ sont encore sur Γ .

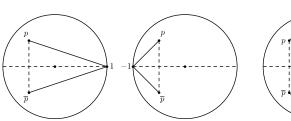
Ce qui suit se justifie en regardant juste les trois dessins. On a :

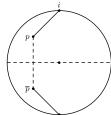
$$\varphi(1) = \frac{1-p}{\overline{p}-1}$$

qui est de module 1. De même : $\varphi(-1) = \frac{-1-p}{-1-\overline{p}}$ qui est aussi de module 1. Calculons le module de : $\varphi(i) = \frac{i-p}{\overline{p}i-1}$.

On a:

$$\left|\frac{i-p}{\overline{p}i-1}\right| = \frac{|i-p|}{|\overline{p}i-1|} = \frac{|i-p|}{|-i(-i-\overline{p})|} = \frac{|i-p|}{|(-i-\overline{p})|} = 1.$$





Comme φ est un homéomorphisme de Ω sur lui-même laissant Γ globalement invariant, il envoie composante connexe de $\Omega \backslash \Gamma$ (\mathbb{D} en est une) sur composante connexe de $\Omega \backslash \Gamma$. Mais $p \in \mathbb{D}$ et $\varphi(p) = 0$ qui appartient encore à \mathbb{D} ; donc l'image de \mathbb{D} est \mathbb{D} .

Soit maintenant f un biholomorphisme de \mathbb{D} . Posons :

$$z_0 = f(0),$$
 $h(z) = \frac{z - z_0}{(\overline{z}_0)z - 1}$ et $g = h \circ f$.

Alors g est un biholomorphisme de \mathbb{D} qui vérifie g(0) = 0. D'après le lemme de Schwarz, on a $|g(z)| \leq |z|$ pour tout $z \in \mathbb{D}$. Mais comme g^{-1} est aussi un biholomorphisme de \mathbb{D} qui vérifie $g^{-1}(0) = 0$, on a $|g^{-1}(z)| \leq |z|$ pour tout $z \in \mathbb{D}$. On en déduit donc |g(z)| = |z| pour tout $z \in \mathbb{D}$.

La fonction $\frac{g(z)}{z}$ est holomorphe et son module $\left|\frac{g(z)}{z}\right|$ est constant égal à 1; elle est donc égale à une constante λ de module 1. D'où $f(z) = h^{-1}(g(z)) = h^{-1}(\lambda z) = \lambda \frac{z - \overline{\lambda} z_0}{(\lambda \overline{z}_0) z - 1}$. En posant $p = \overline{\lambda} z_0$ et $\lambda = e^{i\theta}$ on peut écrire $f(z) = e^{i\theta} \frac{z - p}{\overline{p}z - 1}$. C'est l'expression cherchée. Maintenant on peut remarquer que :

$$f(z) = e^{i\theta} \frac{z - p}{\overline{p}z - 1} = \frac{e^{i\frac{\theta}{2}} \cdot z - e^{i\frac{\theta}{2}} \cdot p}{\overline{p}e^{-i\frac{\theta}{2}} \cdot z - e^{-i\frac{\theta}{2}}} = \frac{\alpha z + \overline{\beta}}{\beta z + \overline{\alpha}}$$

avec:

$$\alpha = \frac{e^{i\frac{\theta}{2}}}{\sqrt{1-p\overline{p}}}$$
 et $\beta = \frac{\overline{p}e^{-i\frac{\theta}{2}}}{\sqrt{1-p\overline{p}}}$.

Ceci termine la démonstration du théorème.

Théorème

Tout automorphisme du plan complexe $\mathbb C$ est de la forme f(z)=az+b avec $a\in\mathbb C^*$ et $b\in\mathbb C$.

Quelques précisions d'abord : Soient U l'ouvert obtenu en privant $\mathbb C$ d'un disque $\{|z| \le r\}$ et $f : U \longrightarrow \mathbb C$ une fonction.

- On dit que f est holomorphe au point ∞ si la fonction $\phi(z) = f\left(\frac{1}{z}\right)$ est holomorphe en 0.
- On dit que f est méromorphe en ∞ si la fonction $\phi(z) = f\left(\frac{1}{z}\right)$ est méromorphe en 0. Dans ce cas le point ∞ est un pôle de f.
- On dit que point ∞ est une singularité essentielle de f si 0 en est une de la fonction $\phi(z) = f\left(\frac{1}{z}\right)$.
- On en déduit par exemple que toute série entière $\sum_{n=0}^{\infty} a_n z^n$ avec un nombre infini de termes a le point ∞ comme singularité essentielle. Par le théorème de Weierstrass l'image par f de tout ouvert $V = \{z : |z| > r\}$ est dense dans \mathbb{C} .

Passons maintenant à la preuve du théorème.

- On pose $U = \{z \in \mathbb{C} : |z| < 1\}$ et $V = \{z \in \mathbb{C} : |z| > 1\}$.
- Un automorphisme f de \mathbb{C} est avant tout une fonction holomorphe sur \mathbb{C} tout entier, donc une série entière $f(z) = \sum_{n=0}^{\infty} a_n z^n$ de rayon de convergence $R = +\infty$. Si le nombre de termes non nuls de cette série n'était pas fini, le point ∞ serait une singuarité essentielle; par le théorème de Weierstrass l'ouvert V' = f(V) serait dense dans \mathbb{C} , en particulier tout point de U' = f(U) serait adhérent à V'; mais ceci est impossible car les ouverts U' et V' sont disjoints et non vides. Par conséquent f est un polynôme $f(z) = \sum_{k=0}^k a_k z^k$.
- Comme l'application f est bijective, et donc a fortiori injective, ce polynôme doit être du premier degré, c'est-à-dire de la forme f(z) = az + b avec $a \in \mathbb{C}^*$ et $b \in \mathbb{C}$.

4. Regard sur certains ouverts

3.1. Les couronnes

Soient r et R deux réels tels que $0 \le r < R \le +\infty$. On appelle couronne (ouverte) de $centre\ z_0$ et de rayons r et R l'ensemble $C(z_0, r, R) = \{z \in \mathbb{C} : r < |z - z_0| < R\}$.

Par la translation $z \mapsto (z - z_0)$, on voit que $C(z_0, r, R)$ est holomorphiquement équivalente (et en d'autres sens géométriques d'ailleurs) à la couronne de centre l'origine et de rayons r et R qu'on notera simplement C(r, R). Désormais, toutes nos couronnes seront centrés à l'origine.

Question: On se donne deux couronnes C(r,R) et C(r',R'). Dans quelles conditions sont-elles holomorphiquement équivalentes?

La réponse à cette question passe par la description explicite de la couronne C(r, R) en fonction des valeurs des deux rayons r et R.

Type 1 :
$$r = 0$$
 et $R = +\infty$

On a alors $C(r,R) = \mathbb{C}^*$, ouvert bien connu. Son revêtement universel est le plan complexe tout entier de projection :

$$p: z \in \mathbb{C} \longmapsto p(z) = e^{2i\pi z} \in \mathbb{C}^*.$$

C'est même un morphisme de groupes qui donne lieu à la suite exacte :

$$0 \longrightarrow \mathbb{Z} \hookrightarrow \mathbb{C} \stackrel{p}{\longrightarrow} \mathbb{C}^* \longrightarrow 1.$$

Le groupe $\operatorname{Aut}(\mathbb{C}^*)$ (qu'on notera G) est engendré par les homothéties complexes $h: z \longmapsto az$ avec $a \in \mathbb{C}^*$ et l'homographie $\gamma(z) = \frac{1}{z}$.

C'est le produit semi-direct interne du groupe multiplicatif \mathbb{C}^* (vu comme le groupe des homothéties) par le groupe $\mathbb{Z}/2\mathbb{Z}$ agissant sur \mathbb{C}^* par conjugaison par l'intermédiaire de son générateur γ :

$$(\gamma \cdot h)(z) = (\gamma^{-1} \circ h \circ \gamma)(z) = \frac{z}{a} = h^{-1}(z)$$

pour h(z) = az. Il est résoluble puisque son premier groupe dérivé $G_1 = [G, G] = \mathbb{C}^*$ est commutatif. Mais il n'est pas nilpotent car $G^2 = [G, G^1] = [G, G_1] = G_1$, donc $G^3 = [G, G^2] = G_1$ et, pour tout entier $n \geq 1$, on a :

$$G^{n+1} = [G, G^n] = G_1.$$

Type 2 : r = 0 *et* $R < +\infty$

C'est alors le disque de rayon R > 0 privé de l'origine. Par l'homothétie $z \longmapsto \frac{z}{R}$ il est holomorphiquement équivalent au disque unité épointé $\mathbb{D}^* = \mathbb{D} \setminus \{0\}$. Ce dernier admet le demi-plan \mathbb{H} comme revêtement universel de projection $p: \mathbb{H} \longrightarrow \mathbb{D}^*$ avec $p(z) = e^{2i\pi z}$. Le groupe $Aut(\mathbb{D}^*)$ des auomorphismes de \mathbb{D}^* est réduit au groupe SO(2) des rotations centrées à l'origine. En effet, un automorphisme φ de \mathbb{D}^* est avant tout une fonction holomorphe $\mathbb{D}^* \longrightarrow \mathbb{D} \subset \mathbb{C}$. Comme elle est à valeurs dans \mathbb{D} , elle est bornée; elle se prolonge donc à D (en vertu du Théorème de Riemann VI.5.5). Par le théorème V.6.3, l'automorphisme φ est alors de la forme $\varphi(z) = e^{i\theta} \frac{z-p}{\overline{p}z-1}$ où $p \in \mathbb{D}$ et $\theta \in \mathbb{R}$. Mais comme nécessairement $\varphi(0) = 0$, p = 0 et par suite φ est une rotation.

Type
$$3: r > 0$$
 et $R = +\infty$

C'est le plan complexe $\mathbb C$ duquel on a ôté le disque fermé de centre l'origine et de rayon r. Il se transforme biholomorphiquement en le disque épointé $\mathbb D^*$ par l'homographie $\varphi(z)=\frac{r}{z}$. « Nous sommes donc dans la situation qui précède » .

Type
$$3: r > 0$$
 et $R < +\infty$

C'est le cas où C(r,R) est ce qu'on pourrait considérer comme une « vraie couronne » au sens familier. Décrivons son revêtement universel. À cet effet, on considère la bande :

$$\mathcal{B} = \{ z \in \mathbb{C} : \alpha < \Im(z) < \beta \}$$

avec
$$\alpha = -\frac{\ln(R)}{2\pi}$$
 et $\beta = -\frac{\ln(r)}{2\pi}$.

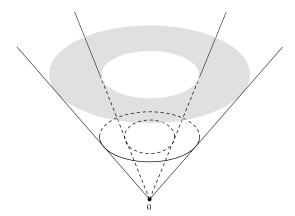
L'application:

$$p_0: z \in \mathcal{B} \longmapsto e^{2i\pi z} \in C(r,R)$$

est un revêtement de groupe \mathbb{Z} . Mais la bande \mathcal{B} est simplement connexe et strictement contenue dans \mathbb{C} . D'après le théorème d'uniformisation, il existe un isomorphisme φ envoyant \mathbb{D} sur \mathcal{B} .

L'application composée $p = p_0 \circ \varphi : \mathbb{D} \longrightarrow C(r,R)$ est aussi un revêtement de la couronne C(r,R), et c'est son revêtement universel. Soient C(r,R) et C(r',R') deux couronnes avec r,r'>0 et $R,R'<+\infty$. Supposons $\frac{R}{r}=\frac{R'}{r'}$, ce qui est équivalent à $\frac{R}{R'}=\frac{r}{r'}=\lambda$. Alors l'homothétie $z\longrightarrow \lambda z$ transforme C(r',R') en C(r,R); les deux couronnes C(r,R) et C(r',R') sont donc équivalentes. En particulier, toute couronne C(r,R) est équivalente à $C(1,\rho)$ avec $\rho=\frac{R}{r}$.

Réciproquement, si les deux couronnes C(r,R) et C(r',R') sont équivalentes, alors on a nécessairement $\frac{R}{r} = \frac{R'}{r'}$.



Une famille de couronnes équivalentes indexée par $t \in \mathbb{R}^*_+$.

Qu'en est-il du groupe des automorphismes de C(r,R) (avec $0 < r < R < +\infty$)? Il est engendré par les rotations centrées à l'origine et l'homographie $\gamma: z \longmapsto \frac{rR}{z}$. Il est isomorphe au produit semi-direct:

$$SO(2) \rtimes \mathbb{Z}/2\mathbb{Z}$$

où $\mathbb{Z}/2\mathbb{Z}$ agit sur SO(2) par conjugaison.

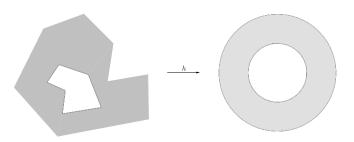
Biholomorphismes

Reste le cas plus général où l'ouvert U a un groupe fondamental isomorphe à Z. Évidemment, une couronne en est l'exemple-type. En plus, elle est à géométrie très simple, et constitue un modèle pour de tels ouverts. Plus précisément, on a le théorème qui suit.

4.2. Le groupe fondamental est **Z**

Théorème

Soit U un ouvert de $\mathbb C$ tel que $\pi_1(U) = \mathbb Z$. Alors U est holomorphiquement équivalent à une couronne C(r,R) où r et R sont tels que $0 \le r < R \le +\infty$.



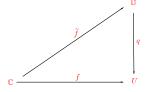
Le dessin correspond au cas $0 < r < R < +\infty$

Petit théorème de Picard

Soit $f: \mathbb{C} \longrightarrow \mathbb{C}$ une fonction holomorphe non constante. Alors le complémentaire de l'image de f contient au plus un point.

Preuve. Supposons que f n'atteint pas deux valeurs distinctes a et b. Notons U l'ouvert $\mathbb{C}\setminus\{a,b\}$ et \widetilde{U} son revêtement universel. Comme \widetilde{U} est simplement connexe, à biholomorphisme près, il y a trois possibilités : \widetilde{U} est la sphère de Riemann $\widehat{\mathbb{C}}$, le plan complexe \mathbb{C} ou le disque unité \mathbb{D} . Comme U est non compact, \widetilde{U} ne peut pas être $\widehat{\mathbb{C}}$. Et comme $\pi_1(U)$ est le groupe libre à deux générateurs et qu'il doit s'injecter dans $\operatorname{Aut}(\widetilde{U})$, \widetilde{U} n'est pas \mathbb{C} non plus. Donc \widetilde{U} est le disque $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$.

Soit $q:\mathbb{D}\longrightarrow U$ la projection de revêtement. Comme \mathbb{C} est simplement connexe, il existe une application holomorphe $\widetilde{f}:\mathbb{C}\longrightarrow\mathbb{D}$ telle que le diagramme ci-dessous commute :



La partie \mathbb{D} étant bornée dans \mathbb{C} , la fonction \widetilde{f} est aussi bornée, donc constante par le théorème de Liouville. Par suite f est constante. Mais ceci est une contradiction avec l'hypothèse sur f.

BIBLIOGRAPHIE

- [1] AHLFORS, L.V. *Complex Analysis*. Collection *Mathematics Series*, McGraw-Hill (1979).
- [2] Cartan, H. Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes. Collection Enseignement des Sciences, Hermann (1985).
- [3] EL KACIMI ALAOUI, A. *Variable complexe et surfaces riemanniennes*. Références Sciences, Ellipses (2021).
- [4] FARKAS, H.M. & KRA, I. *Riemann Surfaces*. GTM 71 (1980), Springer-Verlag.
- [5] FORSTER, O. Lectures on Riemann Surfaces. GTM 81 (1981), Springer-Verlag.
- [6] Freitag, E. Hilbert Modular Forms. Springer-Verlag, (1990).
- [7] HÖRMANDER, L. An Introduction to Complex Analysis in Several Variables. D. Van Nostrand Compagny. Inc. (1966).

- [8] JONES, G. & SINGERMAN, D. Complex Functions. An algebraic and geometric viewpoint. Cambridge University Press, (1987).
- [9] Krantz, S. G. Geometric Function Theory. Birkhäuser (2006).
- [10] LAVRENTIEV, M. & CHABAT, B. Méthodes de la théorie des fonctions d'une variable complexe. Éditions Mir, Moscou (1972).
- [11] MAASS, H. Lectures on Modular Functions of one Complex Variable. Tata Institute of Fundamental Research, (1964).
- [12] Saint-Gervais, H. P. *Uniformisation des surfaces de Riemann*. ENS Éditions, Lyon (2010).
- [13] Schlichenmaier, M. An Introduction to Riemann Surfaces, Algebraic Curves and Moduli Spaces. Lecture Notes in Physics 322, Springer-Verlag (1979).
- [14] Schwerdtfeger, H. *Geometry of Complex Numbers*. Dover Publications, INC New York (1979).
- [15] VIDONNE, R. *Groupe circulaire, rotations et quaternions*. Collections CAPES et Agrégation, Ellipses (2001).