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ABSTRACT

The cohomology of discrete groups is defined
in purely algebraic way. One might a priori
think that algebra is its unique playground, but
it is not always so. The purpose of our lecture
is to bring the hearer to take a short walk to
see how this cohomology actually crosses
various branches of mathematics (analysis,
geometry, dynamical systems...). We will see
this on simple and significant examples in
which this object appears as an effective tool
to solve some difficult problems or, at least, to
reformulate them in a different way to possibly
attack them more easily.
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0. The general problem

Let E be a Fréchet space. Mostly E will be the space C∞(E) of
sections of class C∞ of a vector bundle E −→ M (over a compact

manifold M) equipped with the C∞-topology. For example :

i) If E trivial with fibre C, E is the space of functions M −→ C of

class C∞.

ii) If E is the r th exterior power of the cotangent bundle T ∗M , E is

the space of differential forms of degree r on M .

Examples of this type abound, especially in geometry !

Let γ : E −→ E be an automorphism. Denote by Eγ the set of

elements f of E invariant by γ, that is, satisfying γ · f = f .
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Eγ is the kernel of the (continuous) coboundary operator :

(1) δ : f ∈ E 7−→ (f − γ · f ) ∈ E .

Then Eγ is a closed subspace of E and is also a Fréchet space.

Let T : E −→ E be a bounded operator commuting with γ. We

are interested by the solutions in Eγ of the equation Tf = g where

g ∈ Eγ is given.

A natural way is to solve firstly the equation in E (forgetting that g
is γ-invariant) and then correct the solution f0 ∈ E by adding an

element h of the kernel N of T to make the new solution f = f0 + h
invariant by γ, that is, satisfying the relation γ · (f0 + h) = f0 + h
i.e. h − γ · h = γ · f0 − f0. (The element (γ · f0 − f0) is in N.) This

gives the following problem :

Let g ∈ N. Does there exist h ∈ N s.t. : h− γ · h = g ?
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This is the cohomological equation of the dynamical system

(N, γ) : N is a Fréchet space on which the automorphism γ
acts !

The terminology comes from the fact that the first cohomology

group H1(Z,N) of the discrete group Z with coefficients in the

Z-module N is exactly the cokernel of the operator δ : N −→ N.

Problem

Let N be a Fréchet space and γ an automorphism
of N. Compute the space H1(Z,N).

Why this vector space is so important ?

We shall see, through the following example, some answers to this

question.
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1. The ∂ on C∗

Let U be an open set of C. A point in U will be defined by its real

coordinates (x , y) or its complex one z = x + iy . Let C∞(U) be the

space of complex functions of class C∞ on U . We will be interested

by the partial differential equation called the Cauchy-Riemann

equation :

(CR) ∂f =
∂f

∂z
=

1

2

(

∂f

∂x
+ i

∂f

∂y

)

= g

where g ∈ C∞(U) is given.

The existence of a solution f to equation (CR) for any function g is

equivalent to the triviality of the Dolbeault cohomology group

H1(U,O) of the open set U where O is the sheaf of germs of

holomorphic functions on U .
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In the late of the 19th century mathematicians were able to solve this

equation on U = C (by using the Cauchy formula) but not yet on

any open set of C. For instance, what about U = C∗ = C \ {0} ?

• Recall that we have an action of Z on C generated by the

biholomorphism τ : C −→ C given by τ(z) = z + 1 ; γ induces an

automorphism γ on the Fréchet space E = C∞(C) of C∞-functions

on C :

(γ · f )(z) = f ◦ τ(z) = f (z + 1)

but also on the space N = H(C) of holomorphic functions which is

exactly the kernel of the operator C∞(C)
∂

−→ C∞(C).
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• The action of Z on C which we have defined is holomorphic, free

and proper. The quotient C/τ is then a Riemann surface. It can be

described explicitly : it is exactly the action by translation of Z on

the additive group (C,+) ; since Z is the kernel of the morphism

exp : z ∈ C 7−→ e2iπz ∈ C∗, the following sequence is exact :

(2) 0 −→ Z →֒ C
exp
−→ C∗ −→ 1.

e2iπz = e2iπ(x+iy) = e−2πy · e2iπx .

This proves that the quotient C/τ is a Riemann surface ; it is

biholomorphically equivalent to C∗.
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• The C∞-functions on C∗ are identified to the C∞-functions on C

which are invariant by γ, that is, functions f : C −→ C satisfying the

periodicity condition f (z + 1) = f (z). They constitute a closed

subspace Eγ of the Fréchet space E = C∞(C). Since the equation

(CR) has a solution in E , we have also a solution in Eγ if the vector

space H1(Z,N) is trivial (this was noted in the introduction). Is it

then the case ? Yes :

Guichard’s Theorem (1887)

Let τ : z ∈ C 7−→ z + 1 ∈ C and let γ be the automorphism of the
Fréchet space N = H(C) of holomorphic functions on C defined by
γ · f = f ◦ τ . Then H1(Z,H(C)) = 0.
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The proof given by Guichard is purely analytic. It is very technical

and long, but at that time, it answers (implicitly or explicitly) a

question !

Natural question :

For which Riemann surface and automorphism γ we still

have that kind of result ?

Here is a response :

Theorem (2011)

Let Σ be a noncompact Riemann surface and γ : Σ −→ Σ an

automorphism which acts on it freely and properly such that

the quotient M = Σ/γ is a noncompact Riemann surface.

Then, for any holomorphic function g : Σ −→ C and any

λ ∈ C, there exists a holomorphic function f : Σ −→ C which

is a solution of the equation f ◦ γ − λf = g .

The particular case Σ = C, λ = 1 and γ(z) = z + 1 gives the

theorem of Guichard !
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2. The equation X · f = g on a manifold

2.1. A continuous dynamical system (CDS for short) is a couple

(M,X ) where M is a manifold (compact for simplicity) and X a

vector field on M .
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Two CDS (M,X ) and (N,Y ) are said to be conjuguated if there

exists a diffeomorphism h : M −→ N such that h∗(X ) = Y .

Existence of a conjugacy implies a very important fact : everyting

that happens for one of the two dynamical systems happens

also for the second one !

2.2. Let (M,X ) be a CDS. Then the vector field X defines a first

order differential operator X : C∞(M) −→ C∞(M) given by :

(3) (X · f )(x) = (dx f )(Xx)

value of the differential dx f of f at the point x (which is a linear

functional on the tangent space TxM) on the vector Xx ∈ TxM .

It is natural to look for solutions of the continuous cohomological

equation :

(4) X · f = g .
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The operator X : C∞(M) −→ C∞(M) extends naturally to an

operator on the space of distributions :

X : T ∈ D′(M) −→ X · T ∈ D′(M)

defined by 〈X · T , ϕ〉 = −〈T ,X · ϕ〉. One can also be interested by

the solutions of the continuous cohomological equation on

distributions :

(4′) X · T = S .

A distribution T is invariant by X or X -invariant if it satisfies

X · T = 0, that is, it is zero on the image of the differential operator

X : C∞(M) −→ C∞(M). A necessary condition (which is not

sufficient in general) for the equation (4) to admit a solution f is

〈T , g〉 = 0 for any distribution T invariant by X .
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The problem of the regularity of the solution is very important. We

say that X is globally hypoelliptic if, for any distribution

T ∈ D′(M) :

X · T ∈ C∞(M) =⇒ T ∈ C∞(M).

In particular, if this is the case, any X -invariant distribution T is

regular that is, there exists a function ψ of class C∞ on M such

that, for any function f ∈ C∞(M) we have :

〈T , f 〉 =

∫

M

f (x) · ψ(x)dx

where dx is the canonical measure on M (associated to the

differentiable structure).
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Fundamental example

2.3. Let n ≥ 2 be an integer. The vector space Rn will be equipped

with its usual scalar product 〈 , 〉 ; the associated norm will be

denoted | · |. The torus Tn is obtained as the quotient of Rn by its

standard lattice Zn. For m ∈ Zn, we denote Θm the function

Θm(x) = e2iπ〈m,x〉. A function on Tn is a function f : Rn −→ C

satisfying the invariance condition f (x +m) = f (x) for any x ∈ Rn

and any m ∈ Zn.

If f : Tn −→ C is integrable, it admits a Fourier series expansion :

(5) f (x) =
∑

m∈Zn

fmΘm(x)

where fm are the Fourier coefficients of f given by the integral

formulaes :

(6) fm =

∫

Tn

f (x)e−2iπ〈m,x〉dx .
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If, in addition, the function f is square integrable, the coefficients fm
satisfy the convergence condition :

∑

m∈Zn

|fm|
2 < +∞.

In the same way, any distribution T on the torus Tn (viewed as a

Zn-periodic distribution on Rn) can be written :

T =
∑

m∈Zn

TmΘm

where the family of complex numbers Tm (indexed by m ∈ Zn) is at

most of polynomial growth, that is, there exist an integer r ∈ N

and a constant C > 0 such that |Tm| ≤ C |m|r for any m ∈ Zn.
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2.4. For any r ∈ N, we denote W 1,r the space of functions f on the

torus Tn given by their Fourier coefficients (fm)m∈Zn and satisfying

the condition
∑

m∈Zn

|m|r |fm| < +∞. Similarly, W 2,r will be the space

of functions f on the torus Tn given by their Fourier coefficients

(fm)m∈Zn and satisfying the condition
∑

m∈Zn

|m|2r |fm|
2 < +∞. These

spaces are complete with respect to the norms :

||f ||1,r = |f0|+
∑

m∈Zn\{0}

|m|r |fm| for f ∈ W 1,r

and :

||f ||2,r =

√

|f0|2 +
∑

m∈Zn\{0}

|m|2r |fm|
2 for f ∈ W 2,r



0. The general problem 1. The ∂ on C
∗ 2. The equation X · f = g on a manifold

2.4. For any r ∈ N, we denote W 1,r the space of functions f on the

torus Tn given by their Fourier coefficients (fm)m∈Zn and satisfying

the condition
∑

m∈Zn

|m|r |fm| < +∞. Similarly, W 2,r will be the space

of functions f on the torus Tn given by their Fourier coefficients

(fm)m∈Zn and satisfying the condition
∑

m∈Zn

|m|2r |fm|
2 < +∞. These

spaces are complete with respect to the norms :

||f ||1,r = |f0|+
∑

m∈Zn\{0}

|m|r |fm| for f ∈ W 1,r

and :

||f ||2,r =

√

|f0|2 +
∑

m∈Zn\{0}

|m|2r |fm|
2 for f ∈ W 2,r



0. The general problem 1. The ∂ on C
∗ 2. The equation X · f = g on a manifold

2.4. For any r ∈ N, we denote W 1,r the space of functions f on the

torus Tn given by their Fourier coefficients (fm)m∈Zn and satisfying

the condition
∑

m∈Zn

|m|r |fm| < +∞. Similarly, W 2,r will be the space

of functions f on the torus Tn given by their Fourier coefficients

(fm)m∈Zn and satisfying the condition
∑

m∈Zn

|m|2r |fm|
2 < +∞. These

spaces are complete with respect to the norms :

||f ||1,r = |f0|+
∑

m∈Zn\{0}

|m|r |fm| for f ∈ W 1,r

and :

||f ||2,r =

√

|f0|2 +
∑

m∈Zn\{0}

|m|2r |fm|
2 for f ∈ W 2,r



0. The general problem 1. The ∂ on C
∗ 2. The equation X · f = g on a manifold

W 2,r is the r th Sobolev space on Tn ; it has a Hilbert structure given

by the Hermtian product :

〈f , g〉r = f0g0 +
∑

m∈Zn\{0}

|m|2r fmgm.

We have natural inclusions :

C∞(Tn) ⊂ · · · ⊂ W 1,r+1 ⊂ W 1,r ⊂ · · · ⊂ W 1,0

and :

C∞(Tn) ⊂ · · · ⊂ W 2,r+1 ⊂ W 2,r ⊂ · · · ⊂ W 2,0 = L2(Tn).

The following proposition is easy to establish :
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Proposition

Let T =
∑

m∈Zn

TmΘm a series (the Tm are complex numbers).

The following assertions i), ii) are iii) are equivalent :

i) T is a regular distribution, that is, T is a C∞-function.

ii) for any r ∈ N, the series
∑

m∈Zn

|m|2r |Tm|
2 converges.

iii) for any r ∈ N, the series
∑

m∈Zn

|m|r |Tm| converges.

For any r ∈ N, the injections j1,r : W
1,r+1 →֒ W 1,r and

j2,r : W
2,r+1 →֒ W 2,r are compact operators.

The three first points mean :

⋂

r∈N

W 1,r =
⋂

r∈N

W 2,r = C∞(Tn).
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2.5. Now we consider the linear vector field X =

n
∑

k=1

αk

∂

∂xk
on the

torus Tn where α = (α1, · · · , αn) is a vector of Rn.

A linear vector field on R2

The lattice Z2 in R2
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We suppose that the numbers α1, · · · , αn are Q-linearly

independent ; this implies in particular that the orbits of X are all

dense and that the number α1 + · · · + αn is non equal to 0.

The 1-form 1
α1+···+αn

∑n
i=1 dxi will be denoted χ ; its value on X is 1

and its kernel ν is the hyperplane whose equation is

α1z1 + · · ·+ αnzn = 0. The vector field X defines a first order

differential operator and the associated continuous cohomological

equation is :

(7)

n
∑

k=1

αk

∂f

∂xk
= g .

To solve this equation we will use the Fourier expansion of functions

on the torus Tn. We have :

f (x) =
∑

m∈Zn

fme
2iπ〈m,x〉 and g(x) =

∑

m∈Zn

gme
2iπ〈m,x〉.
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In terms of Fourier coefficients, equation (7) is equivalent to the

system :

(8) 2iπ〈m, α〉fm = gm with m ∈ Zn

This gives a formal solution :

(9) fm =

{

0 if m = 0

gm
2iπ〈m,α〉 otherwise

Problem : The quantity 2iπ〈m, α〉 may tends to 0 more quickly

than the gm ! This may prevent the Fourier series to converge ! This

brings us to the notion of Diopantine approximation.

Any vector α ∈ Rn defines a linear functional on Rn :

x ∈ Rn 7−→ 〈α, x〉 ∈ R and then on the lattice Zn.
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Definition

i) We say that the vector α is Diophantine if there exist real

A > 0 and δ > 0 such that :

|〈α,m〉| ≥
A

| m |1+δ

for any m = (m1, ...,mn) ∈ Zn different from 0. In this case,

we say that X is a Diophantine vector field.

ii) We say that α is a Liouville vector if there
exists A > 0 such that, for any δ > 0, there exists
mδ ∈ Zn satisfying :

|〈α,mδ〉| ≤
A

|mδ|
δ
.

We say that X is a Liouville vector field.
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For example : Any vector α = (α1, · · · , αn) whose components

are algebraic numbers which are Q-linearly independent is a

Diophantine vector.

Indeed, by multiplying the components by a common denominator,

one may suppose that the αi are algebraic integers. For i = 1, · · · , n,
let σi be the different embeddings of the field numbers Q[α1, · · · , αn]
in Q and G the Galois group of an algebraic extension of this field.

For any n-uple m of non zero integers, the product
∏

j

σj(〈α,m〉) is

a non zero algebraic integer invariant by G , then it is a non zero

integer. This implies

∣

∣

∣

∏

j

σj(〈α,m〉)
∣

∣

∣
≥ 1, and then, if σ1 = Id :

|〈α,m〉| ≥
1

∣

∣

∣

∏

j≥2

σj(〈α,m〉)
∣

∣

∣

≥
C

|m|d−1

where d is the degree of the extension Q[α1, · · · , αn] and C is a real

positive constant.
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To understand what is exactly the Diophantine approximation, we

will take n = 2. We have α = (α1, α2) which we can normalize

α = (1, θ) and m = (m1,m2). So 〈α,m〉 = m1 +m2θ and then :

• θ is Diophantine if there exist constants A > 0 and δ > 0 such

that, for any m1 ∈ Z and any m2 ∈ Z∗, we have :

∣

∣

∣

∣

θ −
m1

m2

∣

∣

∣

∣

≥
A

|m2|2+δ

that is, θ is not well approximated by rational numbers.

• θ is Liouville if there exists a constant A > 0 such that, for any

s ∈ N, there exist integers m1,s ∈ Z and m2,s ∈ Z∗ satisfying :

∣

∣

∣

∣

α−
m1,s

m2,s

∣

∣

∣

∣

≤
A

|m2,s |s
.
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Liouville numbers are irrational numbers which are “well

approximated” by rationals. One can construct such numbers by sum

of series of rapidly decreasing, for instance θ =
∞
∑

s=1

2−s! (for which

Liouville proved the property of transcendence).

The principal theorem

i) Suppose that X is Diophantine. Then the equation X · f = gδ
has a solution f ∈ C∞(Tn) if, and only if

∫

Tn g(x)dx = 0.

ii) If X is Liouville, there exists an infinite family of linearly
independent functions (gδ)δ∈N satisfying the condition
∫

Tn gδ(x)dx = 0 and such that equation X · f = gδ has no
solution ; furthermore the image of the operator X is not closed for
the C∞-topology on C∞(Tn).

iii) In the two cases, the space D′
X (T

n) of X -invariant distributions
has dimension 1 and is generated by the Haar measure
dx1 ⊗ · · · ⊗ dxn on the Lie group Tn.
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Finally one remark that the differential operator X :

• is not globally hypoelliptic if α is a Liouville vector.

• is globally hypoelliptiqc if α est Diophantine vector.

The only one known example of a globally hypoelliptic operator is a

Diophantine linear vector field on Tn. This brings the :

Conjecture de Greenfield-Wallach (1973)

Let M be an oriented compact manifold of dimension n and

X a non singular vector field which preserve a C∞-volume

on M. Suppose that X is globally hypoelliptic. Then M is

diffeomorphic to the torus Tn and X is conjuguated to a

Diophantine linear vector field.

This conjecture was proved dimension n = 3 by different authors.

But it is still open in dimension n ≥ 4 even if we suppose that M is a

homogeneous space G/Γ and the vector field X induced by an un

element of the Lie algebra G of the Lie group G !
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